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Abstract Ensembles of coupled atmosphere–ocean glo-
bal circulation model simulations are required to make
probabilistic predictions of future climate change.
‘‘Perturbed physics’’ ensembles provide a new approach
in which modelling uncertainties are sampled systemat-
ically by perturbing uncertain parameters. The aim is to
provide a basis for probabilistic predictions in which the
impact of prior assumptions and observational con-
straints can be clearly distinguished. Here we report on
the first perturbed physics coupled atmosphere–ocean
model ensemble in which poorly constrained atmo-
sphere, land and sea-ice component parameters are
varied in the third version of the Hadley Centre model
(the variation of ocean parameters will be the subject of
future study). Flux adjustments are employed, both to
reduce regional sea surface temperature (SST) and
salinity biases and also to admit the use of combinations
of model parameter values which give non-zero values
for the global radiation balance. This improves the ex-
tent to which the ensemble provides a credible basis for
the quantification of uncertainties in climate change,
especially at a regional level. However, this particular
implementation of flux-adjustments leads to a weaken-
ing of the Atlantic overturning circulation, resulting in
the development of biases in SST and sea ice in the
North Atlantic and Arctic Oceans. Nevertheless, model
versions are produced which are of similar quality to the
unperturbed and un-flux-adjusted version. The ensemble
is used to simulate pre-industrial conditions and a simple
scenario of a 1% per year compounded increase in CO2.
The range of transient climate response (the 20 year
averaged global warming at the time of CO2 doubling) is
1.5–2.6�C, similar to that found in multi-model studies.

Measures of global and large scale climate change from
the coupled models show simple relationships with
associated measures computed from atmosphere-mixed-
layer-ocean climate change experiments, suggesting that
recent advances in computing the probability density
function of climate change under equilibrium conditions
using the perturbed physics approach may be extended
to the transient case.

1 Introduction

We cannot predict with certainty future climate. What
will global average temperature be in 2050? What will be
the frequency of occurrence of land-falling hurricanes in
2100? Predictions are uncertain because of unknown
future concentrations of greenhouse gases and other
anthropogenic and natural forcing agents (e.g. injections
of stratospheric aerosol from explosive volcanic erup-
tions), because of natural (unforced) climate variations
and because our models which we use to make predic-
tions are imperfect1. How are we to make predictions,
for which there is great demand, in the presence of these
uncertainties?

The use of complex modes in ensemble and proba-
bilistic weather forecasting on time-scales of days to
weeks is now well established. In weather forecasting,
the principal uncertainty that has been dealt with using
ensembles is that associated with measuring the initial
state of the atmosphere. There exist a number of tech-
niques for perturbing the initial state to take account of
those uncertainties (e.g. Molteni et al. 1996; Toth and
Kalnay 1997). Other uncertainties, to do with the use of
imperfect models, are also being addressed (Palmer
2001). The value to end-users of the probabilistic fore-
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cast in comparison with the purely deterministic (and
potentially erroneous) forecast has been clearly demon-
strated (Palmer 2002).

The probabilistic decadal-centennial climate change
prediction system may, in contrast, be said to be still in
development. Nevertheless a number of studies have
been performed using models ranging from simple en-
ergy balance models (EBMs; Andronova and Schle-
singer 2001; Wigley and Raper 2001), through earth
system models of intermediate complexity (EMICs;
Forest et al. 2002; Knutti et al. 2002) to full global cir-
culation models (GCMs; Murphy et al. 2004; Stainforth
et al. 2005; Tebaldi et al. 2005; R. Knutti et al. sub-
mitted; Piani et al. 2005). It is the latter we concern
ourselves with here, as only GCMs are capable of rep-
resenting the full nonlinear interactions between physical
processes which are responsible for determining future
climate change, and therefore of predicting the type of
regional multivariate information required by end-users.

We may define two classes of complex-model
ensemble generation methods. The multi-model method
collects GCM output from different modelling centres
into a central repository where it can easily be accessed
(e.g. Covey et al. 2003). This method is ad hoc in the
sense that it has not been designed to completely span
the range of model uncertainty, but it has the advantage
that there is a large ‘‘gene-pool’’ of possible model
components. The other method has been termed the
‘‘perturbed physics’’ approach (Murphy et al. 2004;
Stainforth et al. 2005) in which a single model structure
is used and perturbations are introduced to the physical
parameterisation schemes in the model. Perturbations
are made either to parameters or to the schemes them-
selves (by switching between different existing options
rather than substituting in entirely different rou-
tines—we term the latter a ‘‘structural’’ change to the
model) and the advantage is that variations in model
formulation can be made in a systematic way with
greater control over ensemble design. In comparison
with the multi-model approach, larger ensembles may be
generated in order to explore nonlinearities and extreme
behaviour. It is also possible to distinguish clearly the
effects of different prior assumptions by showing the
sensitivity of the ensemble output to the parameter
sampling strategy, and to distinguish the effects of dif-
ferent observational constraints by using different
experimental designs (e.g. equilibrium, historical simu-
lations, palaeo-climate simulations) and different
observational data sets. Despite the lack of structural
perturbations, it has been shown (Webb et al. 2005) that
the perturbed physics approach can explore, for exam-
ple, much of the range of detailed atmospheric feedbacks
seen in a multi-model ensemble. We may hope one day
to see a combined ensemble made up of a number of
perturbed physics ensembles made with different
AOGCMs.

Perturbed physics ensemble projects have, to date,
employed atmosphere models coupled to thermody-
namic mixed layer oceans (Murphy et al. 2004; Stain-

forth et al. 2005), the advantage being that simulations
of these ‘‘slab’’ models can be easily run to equilibrium
to investigate atmospheric feedbacks and climate sensi-
tivity (here we use the term climate sensitivity to mean
specifically the equilibrium global mean temperature
change due to a doubling of CO2). This set-up cannot be
used to simulate changes in ocean circulation or tran-
sient climate change. It does not capture the delaying
effect of the deep ocean on time dependent climate
changes, the impact of potential changes in ocean cir-
culation and associated heat transport (e.g. Wood et al.
1999) nor the potential for changes in the characteristics
of El Niño variability (e.g. Collins 2000). All of these are
highly uncertain and known to be dependent on model
formulation. It is the purpose of this paper to test the
validity of the perturbed physics approach in generating
ensembles with coupled atmosphere–ocean global cir-
culation models (AOGCMs) and to highlight some of
the important issues. We provide a preliminary assess-
ment of the behaviour of a 17-member AOGCM
ensemble produced with version three of the Hadley
Centre model. The study may be viewed as a small step
towards the generation of probabilistic predictions of
climate change at global and regional scales.

1.1 An aside on probabilistic prediction

Before getting into the details of ensemble generation
using AOGCMs, it is worth setting out the general
method for probabilistic climate prediction to provide
context. Let us assume we are to make a prediction of
the future value of a climate variable s. s may, for
example, be the equilibrium climate sensitivity under a
doubling of CO2, the transient climate response
(TCR—the 20-year average global mean temperature
change at the time of CO2 doubling under a forcing of
1%/per year compounded CO2 increase), or an impact-
related regional variable such as the risk of wind-speeds
in the South West of the UK exceeding some threshold
in 30 years time. The basic approach can be character-
ised by Bayes’ Theorem, namely

pðsjdataÞ / pðdatajsÞpðsÞ; ð1Þ

where data is some collection of observed climate
variables and p denotes the probability. To statisticians
the formula is well known and indeed it is increasingly
appearing in the weather and climate literature (e.g.
Robertson et al. 2004). Nevertheless, it is worth spend-
ing some time over the terms in order to provide an
interpretation of Bayes’ Theorem for the climate change
prediction problem.

The term on the left hand side of Eq. 1 is termed the
posterior probability of s (it is read as the probability of s
given the data). It is our target prediction e.g. the prob-
ability density function of the TCR. The second term on
the right hand side is the prior distribution of s. It may
simply be taken from the raw output of a multi-model
ensemble of AOGCM simulations (recognising that this
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may be highly dependent on which models are included),
it may be the output from an ensemble of perturbed
physics experiments in which the perturbations are sam-
pled from expert-defined distributions (Murphy et al.
2004), or it may be some sub-sample of the ensemble
output in which the characteristics of the prior distribu-
tion are enforced: an example being a uniform distribu-
tion in which all prior values of TCR are considered
equally likely. The important point is that it is the
uncertainty in s before any observations are used. In the
context of this study, it is the output of a small ensemble
of simulations augmented by some statistical ‘‘emula-
tion’’ of the TCR at untried combinations of parameter
values (see Sect. 4). The first term on the right hand side is
termed the likelihood and is perhaps the least familiar.
Formally it is the ‘‘probability of the data given s’’ which
is not particularly intuitive. Practically it is a measure of
data-model fit: how ‘‘good’’ an model ensemble member
is in comparison with observations.

Herein lies the major problem with long-term climate
prediction. If we wished to predict, for example, the
TCR, then the key observation needed to tightly con-
strain the prediction would be of the TCR itself. Yet we
do not have, and will never have, such an observation.
In probabilistic forecasting of shorter time scale varia-
tions of weather and climate, the relative likelihood of
different ensemble members may be determined by
examining many verification cycles, although this often
neglected. (For example, Doblas-Reyes et al. (2005) find
that the reliability of probabilistic seasonal predictions
from a multi-model ensemble cannot be significantly
improved by assigning different weights to the different
models, while the reliability of probabilities derived from
an ensemble of simulations of the same model with
different initial conditions can be improved simply by
inflating the ensemble spread to be consistent with what
happened in the past.) In the climate change prediction
problem we must, in virtually all cases, determine the
likelihood from what we may term indirect observations
of future climate change as there are obviously no
observations of the future nor are there any direct his-
torical or palaeoclimatic analogues. By indirect obser-
vations we mean common (and not so common) tests
applied to climate models, e.g. their ability to simulate
mean climate and variability, 20th century temperature
trends, the response to volcanic eruptions etc. The key
issue in probabilistic climate prediction is to use the
available observations to attach formal estimates of
likelihood to members of an ensemble and to constrain,
as tightly as possible, the posterior distribution of future
change. There should be a good correlation between the
model variable that is being tested and the climate
change variable of interest. Such information may be
extract from the ensemble of simulations using, for
example, a ‘‘perfect model’’ approach in which individ-
ual members are used as surrogates for the real world
(Senior et al. 2004).

Schematic examples of how Bayes’ theorem might be
applied in practice are shown in Fig. 1. In Fig. 1a and b,

the likelihood function is relatively narrow, that is the
data in our possession contains much information about
the forecast variable of interest. In these cases it matters
little what the prior distribution is: the posterior distri-
bution or prediction is virtually unaffected. The prior
may be broad and flat (uniform) or even biased in
comparison with the likelihood, although we note that if
the prior is biased and relatively narrow then it may
‘‘pull’’ the posterior distribution away from what the
data is telling us (thus we see the importance of sampling
a wide range of the uncertainties when generating the
ensemble).

For most climate prediction variables we are not
currently in possession of sharply peaked likelihood
functions. In Fig. 1c the likelihood function is broad and
flat and has little impact on the posterior. In this case we
rely almost entirely on the prior and hence our strategy
for generating the ensemble is of critical importance to
the prediction. In the case of the multi-model ensemble,
the prediction may be heavily dependent on the model
simulations available. The most likely scenario is that
information in both the prior and the likelihood deter-
mine the forecast probability density function (Fig. 1d)
and hence care must be taken in both designing and
quantitatively assessing the ensemble.

2 Ensembles of ‘‘Perturbed Physics’’ AOGCMs

As stated above, previous ensemble work with version
three of the Hadley Centre GCM has utilised a model
set-up with a 50 m mixed-layer (‘‘slab’’) ocean coupled
to the atmosphere module of the GCM (Murphy et al.
2004; Stainforth et al. 2005). Parameters were perturbed
in the atmosphere and sea-ice components in order to
generate the ensemble and sample the uncertainties in
climate feedback processes. Experiments were per-
formed with CO2 levels set at pre-industrial and double
pre-industrial levels.

In Murphy et al. (2004), each of the 53 ensemble
members was generated by perturbing atmosphere, sea-
ice or land-surface parameters away from their standard
value or by switching on and off particular options
within a parametrisation scheme. Twenty-nine parame-
ters/switches were considered in total and more details
are given in the on-line supplementary of Murphy et al.
(2004) and in Barnett et al. (2006). Since that work, we
have performed a number of ensemble experiments in
which multiple parameters are perturbed simulta-
neously. Here we utilize 129 model versions (the stan-
dard model and 128 variants) in which 29 of the model
parameters and switches are perturbed simultaneously
(Webb et al. 2006) according to the following algorithm.

Using the 53 experiments with single parameter per-
turbations, we assumed that the effects of multiple
parameter perturbations to the model could be inferred
from a linear combination of the output from those
runs. We predicted the climate sensitivity and the
Murphy et al. (2004) index of model skill [the Climate
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Prediction Index, CPI, being the combined normalised
root mean squared error (RMSE) of a number of time-
mean surface and atmosphere fields for which good
observations or re-analysis fields exist] for four million
possible combinations of parameters with the parame-
ters drawn from uniform distributions between the
minimum and maximum of the expert specified ranges.
From those four million hypothetical model versions, we
picked 128 versions by splitting the resultant distribution
of climate sensitivity into 64 equally probable bins and
picking 20 model versions from each bin with the best
CPI score. Taking this 1,280 subset of the four million,
and starting from the model version with the best CPI
score, we then picked the model that was furthest away
from that version as measured by a non-dimensional
measure of distance in model parameter space. The next
model version was picked to be furthest away from these

two and the process was iterated subject to picking only
two versions from each climate sensitivity bin. The aim
was to span the range of climate sensitivities consistent
with a uniform prior on parameters but in the process
maximise the chance of getting plausible model versions
and span a wide range of parameter settings. The 128
model versions were run in slab configuration as in
Murphy et al. (2004). We also picked 16 versions to run
contemporaneously in fully coupled configuration by
taking the parameter settings with the best predicted CPI
score in the subset of eight model versions from four
adjacent climate sensitivity bins. Again, the aim was to
sampling a wide range of (predicted) sensitivities and
parameter values from the 128 member slab model
ensemble.

Table 1 gives values used in the 17 HadCM3 model
versions used here: the standard version (Gordon et al.

Fig. 1 Four schematic examples of how an ensemble of climate
model experiments could by used to make probabilistic predictions
of climate change. The grey histograms represent the raw output of
a climate change variable from an ensemble of models. The thin line
represents some smoothed version of this histogram generated by

statistical means, potentially emulating the response at untried
parameter values and is the prior distribution. The dashed line
represents the likelihood and the thick line represents the posterior.
See Sect. 1.1 for more details
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2000; Pope et al. 2000; Collins et al. 2001) and the 16
variants. In a further development on Murphy et al.
(2004) we have also activated the interactive sulphur
cycle component of the model in all our simulations. No
attempt was made to perturb parameters in the ocean
component of the AOGCM, although a small coding
error inadvertently turned off the Richardson number
dependence of the diffusivity calculation in the ocean
vertical mixing scheme in all ensemble members. This
has very little impact on large-scale climate and climate
change. Ocean parameter perturbations will be the
subject of future research. We adopt the following
nomenclature for the ensemble experiments.

The rate of time-dependent global-mean temperature
change depends jointly on atmospheric feedbacks asso-
ciated with climate change (here simply measured by the
inverse of the climate sensitivity) and the efficiency of
processes which remove heat from the surface to the
deep ocean (e.g. Raper et al. 2002). The use of identical
ocean components, coupled to atmospheric components

with perturbed parameters, means we can isolate the
component associated with atmospheric feedbacks.
However, it also means that this study cannot attempt to
capture the full range of uncertainty in transient climate
change possible with HadCM3; a point which we shall
return to in Sect. 3.1.

2.1 Use of flux adjustments

The atmosphere-slab set-up hides one of the major dif-
ficulties in generating AOGCM ensembles. In the
experiments, a calibration phase is first performed in
which the model sea surface temperature (SST) field is
reset to the annually varying climatology at the end of
each day. The heat convergence (or ‘‘q-flux’’) field that
would have been required to achieve this reset is stored
and a time average is produced at the end of the cali-
bration phase. In subsequent control and double CO2

experiments, this ocean heat convergence field is applied
as a term which varies with position and season but not
from year to year. It ensures that time averaged SSTs
remain close to observed climatological values in the
control simulation, while allowing SSTs to vary through
changes to the surface heat flux balance resulting from
natural variability or a change in CO2. The heat con-
vergence field represents the effects of ocean currents
which are not explicitly simulated but also corrects
biases in the surface heat flux balance that would cause
the model to drift if the atmosphere were to be coupled
to a dynamical ocean model. In particular, we follow
standard practice in allowing it to take a non-zero global
mean value.

Table 2 Key global mean quantities relating to the atmosphere-slab (HadSM) and atmosphere-ocean (HadCM) GCM experiments

Version HadSM
flux conv. Wm�2

HadSM
TOA Wm�2

HadCM
FA Wm�2

HadCM
TOA Wm�2

HadSM
s K (r=0.07 K)

HadCM TCR K
(r=0.08 K)

3 �2.8 2.5 0.0 �0.2 3.4 2.0
3.0 �4.2 4.0 �4.5 4.1 3.5 2.1
3.1 5.9 �6.2 5.5 �6.0 2.6 1.6
3.2 �5.2 4.8 �5.3 5.0 3.1 2.0
3.3 �5.8 5.5 �6.2 5.8 3.8 2.3
3.4 �8.4 8.1 �8.5 8.2 4.6 2.4
3.5 5.6 �6.0 5.2 �5.7 2.2 1.5
3.6 �2.3 2.1 �3.2 2.9 3.8 2.1
3.7 �5.8 5.5 �6.3 5.6 3.3 1.9
3.8 �7.0 6.7 �7.3 6.8 4.9 2.5
3.9 2.1 �2.4 1.6 �2.0 2.2 1.6
3.10 �6.5 6.1 �6.1 6.2 3.9 2.0
3.11 �2.3 2.0 �2.7 2.1 3.2 2.1
3.12 -10.0 9.7 �10.2 9.8 4.9 2.6
3.13 �1.5 1.2 �1.6 1.5 3.2 2.1
3.14 �1.8 1.5 �2.1 1.7 3.1 2.1
3.15 �2.1 1.8 �2.3 1.8 2.9 1.7
3.16 �2.7 2.3 �3.8 2.9 3.0 2.1

Version 3 refers to the standard version of the model, 3.0 to the standard version with interactive sulphur cycle and versions 3.1 to 3.16 the
perturbed physics versions (see Table 1 and text for more details). Column 2 is the global mean heat flux divergence in the slab component
of the ensemble member. Columns 3 and 5 the top of the atmosphere flux imbalance in the slab and coupled members. Column 4 is the
global mean of the flux adjustment term. Column 6 is the equilibrium climate sensitivity for 2xCO2 and column 7 is the transient climate
response from the 1% per year CO2 coupled model experiments

Coupled
AOGCM

Atmos-Slab
model

Description

HadCM3 HadSM3 Standard parametrisation settings
HadCM3.0 HadSM3.0 Standard parametrisation settings

with interactive sulphur cycle
HadCM3.1 HadSM3.1 Perturbed parametrisation setting

1—see Table 1
HadCM3.2 HadSM3.2 Perturbed parametrisation setting

2—see Table 1
... ... ...
HadCM3.16 HadSM3.16 Perturbed parametrisation setting

16—see Table 1
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In coupled GCMs with a full dynamic ocean com-
ponent, the equivalent technique is flux adjustment (e.g.
Manabe and Stouffer 1988), in which additive adjust-
ments to the ocean surface heat and water fluxes are first
calibrated from a preliminary integration with relaxa-
tion to observed climatological fields, and then applied
during subsequent control and climate change simula-
tions. The flux adjustments arise from errors in ocean
transport and atmosphere–ocean exchanges. The IPCC
TAR reported, for the first time, results from coupled
model simulations performed without reliance on flux
adjustments (Cubasch et al. 2001), identifying this as an
important step forward in demonstrating the plausibility
of large-scale climate change scenarios simulated by
such models. Here, however, we revert to the use of flux
adjustments, for the three reasons outlined below.

The earth receives an annual average of 341 Wm�2 of
shortwave energy from the sun. In an equilibrium cli-
mate, this is balanced over the long term by the sum of
the outgoing longwave and shortwave energy flux. When
building an AOGCM, representations of different com-
ponents of the physics and dynamics of the climate
system are often developed independently, and once
joined it is hoped that the complex nonlinear relation-
ships between components will conspire to produce
precisely 341 Wm�2 of outgoing radiation. In other
words, we expect the top of the atmosphere (TOA)
balance to be an emergent property of the model. In
reality this is not the case and when the model is
assembled, modification of parameters away from their
best-guess values is required in order to achieve the
balance. When we perturb parameters and parametri-

Fig. 2 Time series of key variables during the spin-up of the 17
member perturbed physics AOGCM ensemble. In the first
�300 years of integration a Haney forcing term is included with
SSTs and SSSs relaxed to climatology with a relaxation timescale of
approximately 15 days. The seasonally-varying relaxation term is
averaged over the last 50 years of the phase and used in the flux-
adjustment phase for a further 200–300 years. In this phase there is
a rapid adjustment of the MOC in each member (see text for more

details). a Total heat flux into the ocean from the atmosphere,
including the relaxation and flux-adjustment term. b The maximum
of the meridional streamfuntion in the North Atlantic. c The global
mean SST and d the SST averaged in the region 50�E–10�W, 40�N–
60�N in the North Atlantic. Units are indicated. The member with
the standard parameter setting is highlighted by the bold black line
and is representative of the behaviour in all ensemble members
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sation schemes to generate our ensemble, the finely
balanced TOA radiation budget is upset, typically by a
few Wm�2 (see Table 2), even though the perturbed
values of the parameters are just as plausible as the
values which gave rise to the ‘‘standard’’ version of the
model with near-perfect TOA balance. (Although note
that the standard atmosphere-slab configuration of
HadCM3 is still out of balance at the TOA by
2.5 Wm�2; Table 2). It may be argued that we should
only make perturbations which result in zero (or small)
changes in the model TOA balance. However, even in a
complex GCM it is clear that a component of model
error arises from missing, poorly-resolved or structur-
ally-deficient representations of physical processes, in
which case the process of tuning model parameters may
lead to TOA balance being achieved for the wrong
reasons (e.g. switching on the more realistic sulphur

cycle results in additional 1.5 Wm�2 change to the TOA
radiation in the standard model version; Table 2). The
imposition of TOA balance as a fundamental constraint
could artificially restrict the space of allowable param-
eter combinations consistent with expert knowledge of
the individual processes which the parameters control.
Using an explicit flux adjustment (calculated separately
for each ensemble member), rather than relying on an
implicit correction applied by tuning the model param-
eters, allows us to sample, in principle, the full range of
combinations of model parameter values.

Whilst the ability to produce reasonable simulations
of continental-scale features of present day climate
without flux adjustment is a welcome achievement, this
is achieved at the expense of substantial regional biases
in SST and salinity (e.g. Gordon et al. 2000). This
potentially reduces the plausibility of the simulated

Fig. 3 Ensemble mean heat (a)
and salinity (b) flux-adjustment
terms. The ensemble mean is
highly representative of the
spatial pattern of flux-
adjustment terms from the
individual ensemble members
with relevant differences being
in the global mean values
shown in Table 2. Similarities
between the pattern of heat flux
adjustment and the SST biases
in the un-flux-adjusted
HadCM3 (Fig. 4) are noted
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changes and natural variability of climate at a regional
scale, to the point where the regional modelling com-
munity typically generate their detailed scenarios of sub-
continental climate change from intermediate ‘‘time-
slice’’ atmosphere-only simulations in which the impact
of biases in SST are removed (e.g. M. Deque et al.
submitted; D.P. Rowell submitted). It is impractical to
produce time-slice simulations for each of a large
ensemble of model versions, so we take the view that the
use of flux adjustments to control regional SST biases is
essential to provide a basis for plausible regional simu-
lations. In addition, SST biases may influence the dis-
tributions of clouds, sea-ice and other variables which
are key in determining the feedbacks which exert a
leading-order control on climate sensitivity and TCR, so

it could be argued that models with significant SST
biases are less plausible than those models which avoid
such biases through the use of flux adjustments. How-
ever we also recognise that the use of flux adjustments
artificially limits the development of simulation biases. It
would be therefore be very important to include the
magnitude of the flux adjustments as an element in any
metric of model skill used to calculate relative likeli-
hoods for alternative model versions, although we re-
serve this step for future work.

In order to provide (in future) credible regional
probability distributions for transient climate change,
we will need ensembles much larger than the 17 members
considered here. It remains computationally unfeasible
to generate ensembles of the required size (perhaps 100

Fig. 4 SST and SSS biases in the un-flux-adjusted HadCM3 (a, c)
and the ensemble mean of the flux-adjusted perturbed physics
ensemble (b, d). Units are as indicated on the figure. The ensemble
mean is highly indicative of SST and SSS biases in each ensemble

member. One notable feature is the excessively cool and fresh
ensemble-mean North Atlantic which is a result of the reduced
strength MOC (see text)
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or more members) using in-house computer resources,
so our strategy relies on an ability to augment the 17
member ensemble by scaling the results of larger slab
model ensembles simulating the equilibrium response to
doubled CO2. This approach, described in detail by
G.R. Harris et al. (submitted), relies on an ability to
establish robust, traceable relationships between the
equilibrium and transient responses of a given model
version, hence it is essential that consistent strategies are
used to generate the slab and transient simulations. If we
were to (effectively) use flux adjustments in the slab
ensemble but not the coupled ensemble, the control
simulations would differ substantially and our ability to
map the equilibrium response to the transient response
could be substantially impaired.

The following steps were performed to compute the
flux adjustment fields.

1. Each model version was started from an initial state
taken from near the end of the long multi-millennial
HadCM3 control experiment (Gordon et al. 2000).
The greenhouse gases, solar constant, background
volcanic aerosol, ozone and sulphur emissions were
all set at levels appropriate to pre-industrial condi-
tions.

2. A Haney forcing, i.e. a relaxation to an observed
seasonally and spatially varying climatology of SST
and sea surface salinity (SSS), was applied. The SST
climatology was taken as an average of years 1871–
1900 of the HadISST1 data set (Rayner et al. 2003) in
which observed SSTs are used to construct fields with
full spatial coverage. The SSS climatology is that
described in Levitus (1994) and for both a relaxation
coefficient of 164 Wm�2 K�1 was employed. This
corresponds to an e-folding time of 15 days for a
50 m mixed-layer ocean. This Haney forcing phase
was run until the 50 year global average heat flux into
the ocean (all terms including the Haney forcing
terms) was less than 0.2 Wm�2 (Fig. 2a). This re-
quired an average of approximately 300 years of
model simulation for each member.

3. The SST and SSS Haney terms were then averaged
over the last 50 years of the Haney forcing phase to
form the seasonally and spatially varying flux
adjustment fields. The ensemble annual average of
the SST and SSS flux adjustment terms are shown in
Fig. 3. The fields for each member are very similar
and highlight common biases found in coupled
models e.g. in the region of the Gulf Stream and in
the equatorial Pacific. The global mean values are
given in Table 2 and are consistent with the global
means of the equivalent slab model heat flux diver-
gence fields. The global-mean heat flux adjustment
terms are of the order of a few Wm�2 and hence the
errors in the outgoing radiation that result from the
cancellation of the spatially-varying positive and
negative biases are only between 0.5 and 3%, yet this
would be enough to cause significant drift in global-
mean quantities.

We would expect each ensemble member run with
flux adjustments to have a stable climate, provided the
flux-adjustment term is calculated over a time period of
relative stability (as is the case here), and assuming that
nonlinear effects of climate variability on the time
averaged state are small.. However there is some drift
which happens in all the members when the flux
adjustment phase is started. Figure 2b shows the
strength of the Atlantic Meridional Overturning Circu-
lation (MOC) during the Haney and flux adjustment
phases. During the Haney phase the circulation in each
ensemble member is slightly weaker than that seen in the
standard HadCM3 non-flux adjusted control experi-
ment, but once the transition is made to flux adjustments
the circulation weakens by several Svedrups before sta-
bilising at a new level.

The standard version of HadCM3 has a tendency to
form ocean waters which are too salty at high latitudes
in the North Atlantic, and this is apparently true of all
the ensemble members here despite the physics pertur-
bations (see the ensemble mean salinity flux adjustment
term in Fig. 3b). The strength of the model MOC is
closely related to the high-latitude ocean surface density
via its connection with the meridional steric height
gradient and interior meridional density gradient
(Thorpe et al. 2001; Vellinga and Wu 2004). During the
Haney phase, the SSS is strongly constrained and the
forcing term provides a correction to the weaker than
observed (but still positive) fresh water input in the re-
gion of oceanic convection. This initial correction results
in a slight reduction in MOC strength at the beginning
of the Haney phase (Fig. 2b) as the fresh water is mixed
down and affects the meridional density gradient.

When the Haney relaxation term is switched off and
the atmosphere and ocean are fully coupled at the
beginning of the flux adjustment phase, natural varia-
tions in the high-latitude fresh water budget are possible.
Any variability-induced change in the fresh water input
causes a change in surface water density and subsequent
vertical mixing, interior density gradient and MOC
strength. If the system were linear, we would expect a
positive ‘‘pulse’’ of freshwater to result in a similar
magnitude reduction in MOC strength as the increase in
strength that would come from and equal but opposite
negative pulse. However, the system is not linear, and
indeed appears close to criticality in the sense that a
reduction in MOC strength associated with a positive
freshwater pulse is very much greater than the increase
associated with a negative pulse. A reduction in fresh
water input results in a slight increase in mixing and an
associated small increase in the overturning whereas as
small increase in fresh water input seems to cap the
mixing and results in a rapid reduction in each ensemble
member. Fortunately the system is not absolutely
unstable as the (albeit) reduced strength MOC does
transport dense salty water polewards from the tropical
regions resulting in a stabilisation of high-latitude sur-
face water density and corresponding stabilisation of the
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Fig. 5 Global mean bias (black bars) and root mean squared error
(RMSE, grey bars—computed with the global bias removed) for a
number of key modelled climate variables computed with respect to
appropriate observations or re-analysis fields. Seasonal mean
values from the control experiments are first calculated and then

averaged to produce an annual mean. S indicates the standard (and
un-flux-adjusted) version of HadCM3, 0 is the flux-adjusted version
of this model with standard parameters and 1–16 are the versions
with perturbed physics. EM indicates the bias and RMSE
computed for the ensemble mean of the 17 model versions
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Fig. 6 Zonal mean total ocean heat transport (computed from
ocean variables) in the standard un-flux-adjusted control run (black
solid line) and from the flux-adjusted ensemble control simulations
(black dashed lines). The total heat transport is further broken
down into its main components associated with the overturning
(red) and gyre (blue) circulations. Again the un-flux-adjusted

version is indicated by the solid line and the ensemble members
by the dashed lines. The dotted line is an estimate computed from an
observed surface flux data set (Grist and Josey 2003) adjusted to
have a near zero global annual mean and the diamonds with error
bars are estimates from observed ocean sections (MacDonald and
Wunsch 1996; Ganachaud and Wunsch 2000 )

Fig. 7 Global mean surface air temperature change from the
perturbed physics ensemble (black lines) and from the multi-model
ensemble of models submitted to the IPCC AR4 assessment (red
lines). The forcing is a 1% per year compounded rise in CO2 and
temperatures are expressed in terms of their anomalies with respect
to the average of the relevant 80 years of control simulation. The
bars on the right are the range of Transient Climate Response

(TCR, see text for definition) from the perturbed physics and AR4
ensembles respectively with values for individual models indicated
in tabular form. For the UKMO-HadGEM1 and MIROC3.2 hires
models, only the scenario in which CO2 concentrations are held
fixed after year 70 were available resulting in a likely but small
underestimation of the model TCR
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MOC (the feedback described in Thorpe et al. 2001 and
Vellinga and Wu 2004).

In each member, the slowing of the MOC results in a
reduced northward heat transport and a cooling of
North Atlantic SSTs (Fig. 2d), although global SSTs are
relatively stable (Fig. 2c). On average, 200–300 years of
AOGCM simulation were required to spin up each
individual ensemble member in the flux adjustment
phase. As a result, the SST and SSS fields for each
member contain unexpected regional biases in the North
Atlantic. These biases are shown in Fig. 4 (the ensemble
mean is very representative of individual members) and
are compared with the biases in the standard un-flux
adjusted version of HadCM3. With the exception of the
North Atlantic, biases in the flux adjusted versions of the

model are less than those seen in the un-flux adjusted
model (note the substantial reduction in annual RMSE),
demonstrating that in most parts of the world ocean the
flux adjustment successfully achieves our aim of limiting
regional biases compared to simulations without flux
adjustment. However, note that an additional effect of
the North Atlantic cooling is an excessive build-up of sea
ice in the polar-regions in each member (see Fig. 5 de-
scribed later).

2.2 Ensemble experiments

We perform the following set of experiments with the
spun-up standard and perturbed physics ensemble.

Fig. 8 Time series of key variables from control (grey lines) and
1% scenario experiments (black lines). Solid lines are for the 17
perturbed physics ensemble members and (where it is possible to
make it out) the dotted line is from the standard HadCM3
experiment (run only to year 80 of the 1% scenario). Anomalies for
each ensemble member computed with respect to its corresponding

control experiment. a Annual, global mean surface air temperature
in K. b Annual, global mean precipitation change (%). c Annual,
global mean ocean heat content per unit surface area of ocean
(Jm�2). d Annual mean maximum of the Atlantic meridional
streamfunction (Svedrups) smoothed with a simple 10-year running
mean filter
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1. AOGCM control experiments with CO2 and other
forcing agents fixed at pre-industrial values. Each
experiment is 240 years in length.

2. AOGCM experiments with CO2 increased at a rate of
1% per year compounded. Each experiment is

150 years in length (i.e. to four times pre-industrial
concentrations).

3. Atmosphere-slab model experiments with pre-indus-
trial CO2. Each experiment was run to equilibrium
and model output was averaged over 20 years. The

Fig. 9 Relationships between various key global mean diagnostics
from the perturbed physics ensemble (black dots) and from the
standard un-flux-adjusted HadCM3 experiment (grey dot). a
Climate sensitivity versus TCR with fitted regression line. b
Climate sensitivity versus effective climate sensitivity, with regres-
sion (solid) and unit gradient line (dotted). c Twice the climate
sensitivity versus the effective climate sensitivity at the time of
quadrupled CO2 with lines as in b. d Effective climate sensitivity
versus the ocean heat uptake efficiency with ±2 standard
deviations in the calculation indicated by the error bar. e Climate

sensitivity versus percentage precipitation change from the corre-
sponding slab model experiments. f TCR versus percentage
precipitation change at the time of doubling of CO2. g TCR at
the time of CO2 quadrupling versus percentage precipitation
change at that time. h TCR at the time of CO2 quadrupling versus
MOC change at that time. i TCR at the time of CO2 quadrupling
versus change in total heat flux into the ocean in the North Atlantic
region 70�E–10�W, 0–80�N at that time. More details are given in
the text
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corresponding 17 members are a subset of the bigger
128 member ensemble.

4. Atmosphere-slab model experiments with twice pre-
industrial CO2. Each experiment was run to equilib-
rium and model output was averaged over 20 years.

2.2.1 Evaluation of control climates

In this section, we evaluate the simulated climates of the
AOGCM ensemble and compare them with the standard
un-flux-adjusted version of HadCM3. There are a large
number of possible observational data sets and evalua-
tion methods we could employ to validate both mean
climate and variability, but space considerations limit us
to a small number of summary statistics. In Sect. 1 it
was emphasised that model evaluation should be used to
produce a formal estimate of likelihood in the Bayesian
prediction. This is the subject of on-going work so here
we present a more ‘‘traditional’’ evaluation with the
simpler aim of highlighting the relative skill of the per-
turbed and flux-adjusted ensemble in comparison with
the standard and well-used model version.

Figure 5 shows summary statistics for a number of
different climate variables for which observed (or re-
analysis) data exists with relatively complete global

coverage. The variables are chosen as a combination of
user-related quantities and other variables which are less
directly relevant to users but are potentially important
determinants of the credibility of simulated climate
feedbacks, such as those which affect the radiation bal-
ance of the members. We show both the globally aver-
aged RMSE and the global mean bias. The former is a
useful measure of the average regional fit between the
model and the observations but we note that for the
latter it is often difficult to compute the absolute value of
the observed global mean for many variables. Hence the
bias should be interpreted mainly as a measure of how
different the model versions are from each other rather
than from the real world.

In broad terms the flux-adjusted ensemble members
are not significantly worse, and in some cases can be
better than the un-flux-adjusted standard version of
HadCM3. For SST, each member shows a similar RMS
error although this is dominated by the North Atlantic
region in the perturbed physics ensemble due to the
MOC adjustment highlighted above (see Fig. 4). For all
the ensemble members, the sea-ice bias is positive (i.e.
too much sea-ice) which is again related to the MOC
slow-down and associated cool North Atlantic. RMS
errors in land-surface air temperature, total precipita-
tion rate and mean sea level pressure, all relevant for

Fig. 10 The ensemble mean and standard deviation of temperature change from years 61 to 80 of the 1% per year ensemble. a and b for
December to February and c and d for June to August. For each member, anomalies are computed with respect to the corresponding
control simulation
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user applications, are similar between the ensemble and
standard version. [Global mean biases in mean sea level
pressure are due in part to a drift in atmospheric mass in
the spin-up phase. This drift is eliminated from the
control and 1% runs (see later) by making a small
modification to the model code.] While RMS errors in
the energy-flux diagnostics are similar, there are signifi-
cant differences in the global mean biases which are
ultimately responsible for the small but significant
variations in the TOA radiation balance which lead to
our need to use flux adjustments.

Also shown in Fig. 5 are summary statistics for the
ensemble mean of the model simulations. It is commonly
found that the ensemble mean outperforms individual
ensemble members, either in the sense that it produces
smaller (local) biases in long-term climate fields (e.g.
Lambert and Boer 2001), or in the sense that it verifies
better in short term forecasts (e.g. Hagedorn et al. 2004).
This would indicate that the process of ensemble aver-
aging removes the random component of the model er-
ror. For all the variables assessed in Fig. 5, the RMS
error of the ensemble mean is less than the RMS error
averaged over all the ensemble members, with the range
of improvement being between approximately 3 and

15%. Only for a few of the variables shown is there more
than a single member that is better than the ensemble
mean in this RMS sense. Thus the ensemble-mean ap-
pears to out perform individual members, although the
improvement is perhaps not as dramatic as that seen in
multi-model studies.

Figure 6 shows the horizontal transport of heat in
the un-flux-adjusted HadCM3 and in the flux-adjusted
standard and perturbed physics ensemble members
compared with two estimates from observations. Each
of the flux-adjusted models shows very similar but
reduced northern hemisphere northward heat transport
in comparison with the standard un-flux-adjusted
HadCM3. This is largely due to a reduction in the
overturning component associated with the reduced
MOC strength in each member rather than any sig-
nificant heat transport by the flux-adjustment term it-
self. While there are considerable uncertainties in the
observations of this quantity, the northward heat
transport in the flux-adjusted ensemble simulations is
at the lower end of the estimates. Nevertheless, the
ocean heat transport is within the range suggested by
these and other observations and is consistent with
that seen in other AOGCMs.

Fig. 11 As in Fig. 10 but for total precipitation expressed in terms of the percentage change with respect to the corresponding control
simulation
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3 Climate change experiments

The 1%/year CO2 increase scenario (hear after referred
to as ‘‘the 1% scenario’’) was chosen as it is relatively
simple to implement and understand and because it
facilitates the comparison with other AOGCMs. We
highlight the gross features of global mean climate
change in comparison with other models in the following
section before going on to look at regional changes.

3.1 Global and large scale climate change

Global mean surface air temperature (Figs. 7, 8a) shows
an approximately linear trend due to the dependence of
the radiative forcing on the logarithm of the CO2 con-
centration. We use the TCR, the global mean anomaly
in surface air temperature change relative to the equiv-
alent control experiment averaged over years 61–80 at
the time of CO2 doubling, as a measure of the magnitude
of the change. The perturbed physics ensemble has a
TCR range of 1.5–2.6�C (Table 2, Fig. 9). Natural var-
iability diagnosed from 20 year segments of the control
experiments implies a one standard deviation error in a
single TCR estimate of 0.08�C so the range is not simply
due to statistical fluctuations, as is clearly evident by the
increase of ensemble spread with time seen in the figure.
The range may be compared to that from the models
submitted as part of the multi-model assessment for the
IPCC 4th assessment report (AR4) which is 1.5–2.7�C
(Fig. 7). The equivalent range quoted in the IPCC 3rd
assessment report (TAR) was 1.1–3.1�C and that from
the current database of the Coupled Model Inter-com-
parison Project is 1.0–3.6�C, although a single model is
responsible for the high upper figure and the range
would be 1.0–2.1�C with this model excluded. Thus the
spread of TCR values in the perturbed physics ensemble
is comparable with that from other multi-model studies
and is very close to that seen in the latest AR4 ensemble.

There is a strong relationship between the TCR of the
given perturbed physics coupled ensemble member and
the climate sensitivity from the slab-model experiment
with the corresponding set of parameter perturbations
(Fig. 9a). In general, we would expect a nonlinear rela-
tionship between transient and equilibrium change as
models with higher climate sensitivities and the same
ocean heat uptake efficiency (see below) have a slower
relative warming rate (i.e. realising less of their total
equilibrium warming at any particular time e.g. Raper
et al. 2002). The relationship is approximately linear
here because the ensemble does not explore extreme
values of sensitivity. Taking figures from Table 9.1 of
the TAR, the multi-model correlation is slightly weaker
(0.73 in comparison with 0.92 in Fig. 9a) with three of
the models exhibiting less warming at the time of CO2

doubling than would be expected from their respective
equilibrium sensitivity. In those three models the time-
dependent effective climate sensitivity (Murphy 1995) at

the time of CO2 doubling is smaller than that computed
from the corresponding atmosphere-mixed-layer exper-
iment [see e.g. Senior and Mitchell (2000) for a specific
example].

The time-dependent effective climate sensitivity from
the perturbed physics ensemble is shown in Fig. 9b and c
at two points of the time evolution. This was calculated
as the ratio of the difference between the radiative
forcing and net TOA flux and the temperature change,
with the assumption that the radiative forcing due to the
1% per year increase in CO2 increases linearly in time at
a rate corresponding to a forcing of 3.8 Wm�2 at the
time of doubling. Raper et al. (2002) show the calcula-
tion of effective climate sensitivity to be only very weakly
dependent on this assumption, and we would expect very
little variation across the ensemble as the same radiation
scheme is employed in each member. Again there is a
high correlation between the slab-model equilibrium
sensitivity and the effective climate sensitivity, and the
fitted regression line at the time of doubling and qua-
drupling of CO2 both have slopes which are statistically
indistinguishable from unity. This is reassuring, as the
reduced strength MOC and excessive sea-ice in the
coupled model experiments could have modified the
strength of the feedbacks in the coupled-model when
compared to those from the equivalent slab-model
members. We may conclude that at the levels of CO2

forcing and time scales considered, there are no changes
in climate within the ensemble which lead to the sort of
large variations in atmospheric feedbacks which might
affect the climate sensitivity to the extent that other
authors have seen (albeit on the long time scales asso-
ciated with stabilisation: Senior and Mitchell 2000; Ra-
per et al. 2001; Gregory et al. 2004).

Anomalies in ocean heat content from the control
and 1% scenario experiments (Fig. 8c) demonstrate the
stability of the integrations. The rate of ocean heat
content increase in the 1% CO2 increase experiments can
be quantified by examining the relationship between the
ocean heat uptake efficiency (see Raper et al. 2002) and
climate sensitivity (Fig. 9d). We calculate the heat up-
take efficiency by taking the 20 year average of the
change in heat flux at the surface of the ocean at the time
of CO2 doubling and the TCR. The uncertainty bar in
Fig. 9d is the ±2 standard deviation error in the cal-
culation expected from natural variability. Thus we
interpret this figure as implying the ocean heat uptake
efficiency is the same in each member (i.e. statistically
significantly differences cannot be found). This is
unsurprising as no ocean parameters were perturbed in
the ensemble. Previous multi-model studies (Cubasch
et al. 2001; Raper et al. 2002; Meehl et al. 2004) have
found a correlation between the effective climate sensi-
tivity and ocean heat uptake efficiency which tended to
reduce the uncertainty range of the TCR. This is not the
case here. They speculate that this is because the high-
latitude warming is greater relative to the global mean in
higher sensitivity models leading to greater heat uptake
efficiency. In this ensemble there is only a weak corre-
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lation between (for example) the ratio of high latitude
warming to TCR and the TCR itself, which tends not to
support this mechanism.

Figure 9e, f and g show the relative change in
global mean total precipitation rate from the slab and
coupled ensemble experiments versus the temperature
change (see also Fig. 8b). Global precipitation change
is closely related to global mean temperature change
through the Clausius–Clapeyron relationship. The year
61–80 range in total precipitation change is 1.7–3.5%
in the perturbed physics ensemble. Interestingly, the
correlation is much weaker in the coupled model case
than in the slab model case. This is not a simple signal
to noise issue as the correlation across the coupled
model simulations is also weak at the time of qua-
drupling of CO2 (Fig.9g). Nor is it the case that cou-
pled models have significantly more variability in
20 year mean precipitation than the slab models. This
remains an issue for future research.

Also shown in Fig. 8d are anomalies in the strength
of the MOC in the control and 1% ensemble. All
members show a relatively stable MOC in the control
phase (post the MOC adjustment highlighted above)
and all members show a reduction in MOC strength as
the CO2 forcing increases. There is a moderate correla-
tion between strength of the MOC weakening and the
strength of the global mean surface temperature change
(Fig. 9h). This is a manifestation of a stronger correla-
tion (r=0.84) between the global mean response and the
change in the total heat flux into the North Atlantic
ocean which is tempered by the relatively large decadal
variability in the MOC (Fig. 7d and Vellinga and Wu
2004). There also a weaker (r=0.48) correlation between
the MOC slow down and the change in fresh water flux
in the North Atlantic region indicating that both pro-
cesses are important (Thorpe et al. 2001); although the
heat-flux provides the large contribution. Despite start-
ing from a state of relatively weak overturning, none of
the members exhibit a complete collapse of the circula-
tion under the 1% per year increase in CO2 forcing.

3.2 Spatial variation of change and uncertainty

Examples of regional patterns of change and their
uncertainty can be assessed by examining the perturbed
physics ensemble average and standard deviation of
seasonal mean surface air temperature and precipitation
anomalies (Figs. 10, 11). These figures come with two
caveats. Firstly, they are not formal indicators of the
mean and width of some probability density function
(under the 1% scenario) as no attempt has been made to
apply the Bayesian algorithm (Sect. 1.1). Secondly, the
figures present information at the model grid-scale
which we might be wary of as GCMs only resolve the
large scale dynamics. Nevertheless, they are good
examples of the type of information which we hope to
present in the future with formal estimates of probabil-
ities.

Mean temperature changes show the familiar pattern
of more warming at high latitudes in comparison to the
tropics and more warming over land areas in compari-
son to ocean areas. In December to February (DJF) the
uncertainty, as measured by the ensemble standard
deviation, is largest in the northern high-latitude regions
(the magnitude and pattern remain similar if the con-
tribution form different global mean warming in differ-
ent ensemble members is removed). In June to August
(JJA) there is a similar uncertainty in the winter high
latitudes, but also considerable ensemble spread over
northern hemisphere land regions.

Ensemble mean precipitation changes are largest in
the tropics in absolute terms but expressed as a per-
centage of the corresponding control simulation
(Fig. 11a, c) significant changes at all latitudes are evi-
dent. There is, for example, a strengthening of the Asian
Summer Monsoon and a weakening of the rainy season
in DJF in the vicinity of the Amazon basin. The latter
has been implicated in the potential for Amazon die-
back as simulated in a version of the Hadley Centre
model with an interactive carbon cycle included (Cox
et al. 2000). While uncertainties in the predicted mon-
soon strength are large (Fig. 11d) they are relatively
smaller in north-eastern South America indicating, at
least for this model, some robust signal. The impact of
uncertainties in Amazonian rainfall change on the
probability for die-back will be a key application of this
ensemble as coupled atmosphere–ocean processes are
known to be implicated (Cox et al. 2004). For example,
there is some indication of an El Niño-like signal in
precipitation which has also been seen in other models
(Collins et al. 2005).

4 Discussion and future work

There have been several recent attempts to produce
probabilistic predictions of both equilibrium and tran-
sient global mean temperature climate change (Andro-
nova and Schlesinger 2001; Wigley and Raper 2001;
Forest et al. 2002; Knutti et al. 2002, submitted; Murphy
et al. 2004; Piani et al. 2005). The response of society to
the issue of climate change requires quantitative pre-
dictions at the regional level and for variables other than
temperature. There are many potentially complex com-
binations of variables such as the frequency of extreme
events and ultimately we require quantitative predictions
of, for example, the impact of climate change on bio-
logical systems and economies. We believe that such
detailed information about changes in the physical Earth
System can only come from complex climate models.
Moreover, in the absence of a perfect model of the Earth
System and of a perfect knowledge of future forcing
agents, the ensemble probabilistic approach is the best
way to provide those predictions.

We have made some headway recently in generating
ensemble simulations of equilibrium change using the
perturbed physics approach (Murphy et al. 2004;
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Stainforth et al. 2005). We require a systematic method
for generating ensembles in order to produce reasonably
large ensemble sizes to adequately explore possible
nonlinearities, to specify a recognisable prior (see
Sect. 1.1) and to test the sensitivity of the predictions to
that prior. None of these are currently possible with the
multi-model ensemble. However, there is clearly a
requirement to move forward from the equilibrium
change case to quantifying uncertainty in time-depen-
dent future climate change. Thus the main motivation
for this study was to test the validity of the perturbed
physics approach for generating ensembles of transient
climate change with fully coupled atmosphere–ocean
models and to highlight some of the main issues and
pitfalls. We have shown that it is possible to generate an
ensemble in this way and moreover that the ensemble
behaves in a way which is consistent with simple physical
relationships between several global mean and large
scale measures of equilibrium and transient climate
change (e.g. Fig. 9) for the range of responses explored.
This point is important as although we have generated
some relatively large (and one very large) ensemble of
perturbed physics atmosphere-mixed-layer-ocean mod-
els (Murphy et al. 2004; Stainforth et al. 2005; Webb
et al. 2005), the spin-up time and length of integration of
coupled model climate change experiments will limit our
ability to generate similar sized ensembles. Hence it is
our hope to infer or ‘‘emulate’’ the behaviour of any
version of the coupled model by scaling its pattern of
equilibrium climate change by the global mean transient
change produced using an energy balance model, and
allowing for differences between the transient and
equilibrium patterns of change (G.R. Harris et al. sub-
mitted). This emulation step will be further extended to
infer responses at untried parameter values.

One caveat is that we have only perturbed atmo-
sphere, land and sea-ice parameters. We are currently
working on assessing and running experiments with
perturbed ocean parameters and these will be the subject
of future papers. The assessment of uncertainties in
ocean heat uptake is a crucial component of the time-
dependent problem.

While the use of flux adjustments will seem to some a
retrograde step, we feel that we must revisit its use.
Improvements in models (e.g. in meridional ocean heat
transport—Gordon et al. 2000) have opened up the
possibility of running without flux adjustments, but we
do not believe that we have resolved all the issues. Two
specific examples are uncovered in this paper. Firstly,
HadCM3 can apparently run without flux adjustments,
yet in the atmosphere-mixed-layer configuration there is
still a 2.5 Wm�2 TOA flux imbalance. Secondly, by
adding a more complex representation of a physical
process (an interactive sulphur cycle) this TOA imbal-
ance is made worse. We could have rejected model ver-
sions which do not have a finely tuned TOA balance, but
we have no evidence that those particular parameter
combinations are not credible as there may be missing or
poorly represented processes which could correct the

balance if included. In addition, we intend to use these
ensembles to make policy-relevant predictions, to pro-
vide boundary conditions for embedded regional models
and as baseline models for the assimilation of data to
make initial value predictions. For these applications,
the existence of temperature and salinity biases signifi-
cantly reduces utility.

Despite these arguments, the use of Haney forcing and
flux adjustments as we have applied them (i.e. in the usual
way) was not entirely successful. Each ensemble member
exhibits a rapid adjustment in the strength of the Atlantic
overturning in the initial flux adjustment phase which
leads to a reduction in ocean northward heat transport,
cooling of North Atlantic SSTs and build-up of excessive
northern hemisphere sea-ice. While these biases do not
appear to excessively influence global and large-scale
climate change, they do perhaps limit the usefulness of
the ensemble in other applications. We are currently
working on techniques to limit the impact of ocean
overturning instabilities in flux-adjusted ensembles.

We have made a small but significant step on the road
to making estimates of the probability density function
of future transient climate change. There are still many
challenges ahead; the generation of sufficiently large
ensembles to adequately span the range of uncertainty,
constraining the ensemble with observations, augment-
ing the ensemble using statistical methods to produce
PDFs, producing information at the regional scales de-
manded by stakeholders and communicating the prob-
abilistic predictions in a way which stakeholders can
interpret. These are all areas in which we are actively
working and hope to make headway in the near future.
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